Call us toll-free

THE 1-DEOXY-D-XYLULOSE-5-PHOSPHATE PATHWAY …

29/05/2016 · Comparative analysis of the terpenoid biosynthesis pathway in Azadirachta indica ..

Approximate price

Pages:

275 Words

$19,50

Azadirachtin induced apoptosis in the ..

The transcripts for individual organs in neem were mapped to KEGG[,-] pathways using the KAAS server. The KO-assigned transcripts were divided into low and high expression categories. A heat-map of these across the four organs was computed using R. Analyses using KEGG were also carried out for other species, namely A. thaliana, O. sativa, V. vinifera and C. sinensis, focusing on the enzymes mapping to the azadirachtin-A biosynthesis pathway. The differential transcript expression level indices of these enzymes in neem relative to other species were compared. The gene structures for these enzymes, and the structures of the top and bottom ten transcripts ranked according to their expression levels were compared across all species.

Functional use(s) - flavor and fragrance agents. Has a floral type odor and an green type flavor.
Photo provided by Flickr

Because pure neem oil contains other insecticidal and fungicidalcompounds in additional to azadirachtin, it is generally mixed at arate of 1 ounce per gallon (7.8 ml/l) of water when used as apesticide.Azadirachtin is formed via an elaborate biosynthetic pathway,but is believed that the steroid tirucallol is the precursor to theneem secondary metabolites.

signaling pathway might be involved in the process ..

of expressed genes and metabolites resulted in identification of possible candidate genes involved in azadirachtin biosynthesis pathway.
Photo provided by Flickr

The Azadirachta indica (neem) tree is a source of a wide number of natural products, including the potent biopesticide azadirachtin. In spite of its widespread applications in agriculture and medicine, the molecular aspects of the biosynthesis of neem terpenoids remain largely unexplored. The current report describes the draft genome and four transcriptomes of A. indica and attempts to contextualise the sequence information in terms of its molecular phylogeny, transcript expression and terpenoid biosynthesis pathways. A. indica is the first member of the family Meliaceae to be sequenced using next generation sequencing approach.

In spite of the varied uses of azadirachtin and other neem-derived limonoids, a modern agro-chemical and/or pharmaceutical program focusing on understanding their molecular mechanism(s) of action is yet to be established. A better understanding of the biology of differentiation of secretory cells known to harbor azadirachtin and other triterpenoids[] may permit development of varieties with higher percentage of these cells in the cotyledons. This information may also be exploited in stalling or delaying further differentiation of these cells to permit greater accumulation of the terpenoids of interest. The elucidation of complete pathways leading to terpenoid biosynthesis and expression of genes involved in such pathways in A. indica will pave ways towards development of newer terpenoid-based biotechnological applications.

Chapter13-Secondary Metabolites and Plant Defense

03/01/2017 · Hence, there is an increased interest to understand the in-vivo biosynthesis of azadirachtin pathway in neem.
Photo provided by Flickr

The de novo sequencing and analyses of the draft genome and organ-specific transcriptomes of neem plant, Azadirachta indica is reported. A. indica is the first Meliaceae family member to be sequenced. The neem genome bears fewer repetitive elements compared to other sequenced higher plants. It has about 20,000 genes with an average transcript length of 1.69 kbp. A. indica’s evolutionary closeness to Citrus species was verified by both molecular phylogenetic analyses and sequence similarity. Transcript expression and the exon-intron junction architecture of underlying genes involved in the terpenoid biosynthesis pathways suggested relative abundance of enzymes involved in the azadirachtin synthesis in neem. Genes involved in the terpenoid biosynthesis pathways in neem bear longer introns compared to the same genes in A. thaliana, O. sativa, V. vinifera and C. sinensis.

The genes related to quinone, terpenoid and terpenoid-backbone synthesis pathways were identified by KEGG’s KAAS automatic pathway annotation pipeline[]. GGPS (NCBI gene ID: 816377), COQ6 (NCBI gene ID: 822006) and CLA1 (NCBI gene ID: 827230) were among the top 5 differentially expressed genes in neem leaf compared to the other organs (Figure). Eight genes (TPS21, NCBI gene ID: 832461; lytB/ispH, NCBI gene ID: 829585; ispE, NCBI gene ID: 817234; GGPS, NCBI gene ID: 816377; +neomenthol dehydrogenase, NCBI gene ID: 825294; FDPS, NCBI gene ID: 827430; FDFT1, NCBI gene ID: 829616 and SQLE, NCBI gene ID: 816814) involved in the synthesis of sesquiterpenes and triterpenes leading to azadirachtin-A were over-expressed in neem compared to A. thaliana, O. sativa, C. sinensis and V. vinifera, (Figurec). The length of introns in the terpenoid and steroid biosynthesis gene families in A. indica were greater compared to the ones in A. thaliana, O. sativa, C. sinensis and V. vinifera (Figure S10 in Additional file).

Biological process and pathway analysis showed that azadirachtin affected starch and ..
Photo provided by Flickr
Order now
  • A patchwork pathway for oxygenase-independent ..

    Growth Factors & Cytokines

  • A powerful insect antifeedant compound is azadirachtin A

    Azadirachtin - The Full Wiki

  • Aishwarya Ramamurthy | Professional Profile

    Biosynthesis

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order