Call us toll-free

What wavelength is the best for photosynthesis? | …

Ideal wavelengths for photosynthesis

Approximate price


275 Words


What wavelengths of light do plants use for photosynthesis?

It is inappropriate to claim that there are no major differences among the plethora of lamps available and their abilities to promote photosynthesis. Certainly the depreciation of overall lamp light output (PPFD) should be considered and readers are encouraged to review the works of Joshi and Morgan (1998; 1999, 2000) and others. Future experiments involving spectral quality and its effects should include more data points, different lamps and perhaps different coral species. Clearly, more work is required before we have an answer to the "best lamp" question. For now, it appears that spectral quality might be subordinate to lamp intensity.

07/04/2014 · What is the optimum wavelength for photosynthesis ..

Our conclusion is that for best observation of fluorescence, we shall illuminate the tank with such light that its reflected portion would least hinder us in seeing the light radiated by corals. Wavelengths required for fluorescence of all chromoproteins are numerous, and there is no single wavelength that could be used for making an ideal actinic light. Based on Fig. 8, fluorescence is observed in quite wide a range of falling light wavelengths, mainly between 400 and 500nm, and different organisms have different fluorescent protein sets. For best fluorescence we need the capacity to adjust the light spectrum in the 400 to 500nm range, according to the needs of a particular aquarium.

What Is The Best Color Of Light For Photosynthesis?

Humans visually perceive any object as the sum of its reflected light and the object's intrinsic emission (an object is considered light emitting if its total emission at a certain wavelength range is higher than the falling light energy in that same region). Usually objects only reflect light, and their color is determined by the ratio, in which different wavelengths falling on its surface are adsorbed or reflected. For example, green leaves adsorb all visible wavelengths except for green, which is reflected - therefore we perceive it as green. When an object not only reflects but also emits its own light, the eye combines the emitted and reflected light spectrum into its perceived color. Yielding color depends on the ratio of the intensities and wavelengths of both reflected and emitted light. This color addition is best illustrated by the diagram shown in Fig. 7:

A light source could be best characterized, perhaps, by spectral distribution of the optical radiation energy at different wavelengths. This characteristic is usually represented by the spectral curve. For most common light sources, however, the spectral characteristic is usually unavailable, and instead an estimated light flux is provided, in lumens.

Photosynthesis Science Fair Projects and Experiments

Record or report findings.
Rate of photosynthesis (measured by ET50, time it took for 50% of the leaf disks to float up)
Color of light (wavelength of light)
Light intensity, temperature, bicarbonate concentration (0.2%), depth of bicarbonate solution, direction of incoming light, pH, amount of soap, size of leaf disk, type of plant
Ten trials for each color, however for each trial, a few disks did not float up.

Green light is also used in photosynthesis, as can be seen from the leaf action spectrum (FIG. 2). It has been established that green light drives photosynthesis more effectively than red or blue light deep within the leaf (Terashima et al. 2009). Further, the insects used in greenhouses as pollinators and biological control agents see best in the green and ultraviolet regions of the spectrum. More interestingly, changes of even 10 nm in the peak wavelength of green light can have dramatic effects on the growth of plants such as lettuce (Johkan et al. 2012).

Order now
  • Free rate of photosynthesis Essays and Papers

    Unfortunately, the wavelength optimal photosynthesis results of the scores in table

  • Free rate of photosynthesis papers, essays, and research papers.

    Photosynthesis science fair projects and experiments: topics, ideas, resources, and sample projects.

  • Which Artificial Lights Are Best For Growing Plants …

    As a leading manufacturer of quality LED products, and OEM services, Fuse LED is positioned to be a market leader

Order now

Georgia Virtual Learning > Home

McCree (1972a) noted that the relative quantum yield for crop plant photosynthesis has two peaks at 440 nm and 620 nm. He also noted however, the , which states that photosynthesis in the presence of two or more wavelengths can be more efficient than the sum of that due to the individual wavelengths. In particular, adding white or red light (less than 680 nm) to deep red light (greater than 680 nm) can beneficially increase the rate of photosynthesis.

Plant Productivity in Response to LED Lighting - …

Coral fluorescence is very beautiful but it is not always easy to observe it. Have a look at the luminous function (spectral sensitivity chart) of the human eye (Fig. 6). Light sensitive elements of the eye are represented by two cell types - the so-called retinal cones and rods. The first are responsible for distinguishing between colors, and the second - for grey tones. The cones work best during daytime, the rods - at night. Remember the saying "all cats are grey in the dark." This is just because we mainly see with the rods in the dark, rather than with cones. The rods do not distinguish between colors: they only sense the relative brightness of an object. The rods are most sensitive to the emerald-green part of the spectrum, with the wavelength of about 510nm (of course, when seeing by the rods, this light is only perceived as a brighter shade of gray rather than green.

Photosynthesis Results - Faculty Websites

As we can see, there is a close relationship between the action spectrum and absorption spectrum of photosynthesis. There are many different types of photosynthetic pigments which will absorb light best at different wavelengths. However the most abundant photosynthetic pigment in plants is chlorophyll and therefore the rate of photosynthesis will be the greatest at wavelengths of light best absorbed by chlorophyll (400nm-525nm corresponding to violet-blue light). Very little light is absorbed by chlorophyll at wavelengths of light between 525nm and 625 (green-yellow light) so the rate of photosynthesis will be the least within this range. However, there are other pigments that are able to absorb green-yellow light such as carotene. Even though these are present in small amounts they allow a low rate of photosynthesis to occur at wavelengths of light that chlorophyll cannot absorb.

wavelengths of light that promote photosynthesis? | …

For illumination engineers, it might seem suspicious that the photosynthetically active radiation is defined over the spectral range 400 nm to 700 nm – exactly the range we commonly assume for human vision. What about longer and shorter wavelengths?

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order