Call us toll-free

Corpuscular theory of light - Revolvy

The nebular hypothesis strongly influenced scientists in the 19th century, as they sought to confirm or challenge it.

Approximate price

Pages:

275 Words

$19,50

the corpuscular theory of light, ..

Perhaps experiments of this decisive character are commonest in Chemistry: chemical tests, says Herschel, “are almost universally crucial experiments.” The following is abridged from Playfair (Encycl. Met., Diss. III.): The Chemists of the eighteenth century observed that metals were rendered heavier by calcination; and there were two ways of accounting for this: either something had been added in the process, though what, they could not imagine; or, something had been driven off that was in its nature light, namely, phlogiston. To decide between these hypotheses, Lavoisier hermetically sealed some tin in a glass retort, and weighed the whole. He then heated it; and, when the tin was calcined, weighed the whole again, and found it the same as before. No substance, therefore, either light or heavy, had escaped. Further, when the retort was cooled and opened, the air rushed in, showing that some of the air formerly within had disappeared or lost its elasticity. On weighing the whole again, its weight was now found to have increased by ten grains; so that ten grains of air had entered when it was opened. The calcined tin was then weighed separately, and proved to be exactly ten grains heavier than when it was placed in the retort; showing that the ten grains of air that had disappeared had combined with the metal during calcination. This experiment, then, decided against phlogiston, and led to an analysis of common air confirming Priestley’s discovery of oxygen.

For the first time, scientists could investigate what the universe was made of.
Photo provided by Flickr

D. presented similar arguments again in 1674 inselection titled "Of the Excellency and Grounds of the Corpuscular orMechanical Philosophy," which was originally published as an appendix to

(or the corpuscular hypothesis) ..

Of the Reconcileableness of Specifick Medicines to the Corpuscular Philosophy ..
Photo provided by Flickr

To be verifiable, then, an hypothesis must be definite; if somewhat vague in its first conception (which is reasonably to be expected), it must be made definite in order to be put to the proof. But, except this condition of verifiability, and definiteness for the sake of verifiability, without which a proposition does not deserve the name of an hypothesis, it seems inadvisable to lay down rules for a ‘legitimate’ hypothesis. The epithet is misleading. It suggests that the Logician makes rules for scientific inquirers; whereas his business is to discover the principles which they, in fact, employ in what are acknowledged to be their most successful investigations. If he did make rules for them, and they treated him seriously, they might be discouraged in the exercise of that liberty of hypothesising which is the condition of all originality; whilst if they paid no attention to him, he must suffer some loss of dignity. Again, to say that a ‘legitimate hypothesis’ must explain all the facts, at least in the department for which it is invented, is decidedly discouraging. No doubt it may be expected to do this in the long run when (if ever) it is completely established; but this may take a long time: is it meanwhile illegitimate? Or can this adjective be applied to Newton’s corpuscular theory of light, even though it has failed to explain all the facts?

Agents, however, are assumed and reasoned upon very successfully which, by their nature, never can be objects of perception: such are the atoms of Chemistry and the ether of Optics. But the severer methodologists regard them with suspicion: Mill was never completely convinced about the ether; the defining of which has been found very difficult. He was willing, however, to make the most of the evidence that has been adduced as indicating a certain property of it distinct from those by which it transmits radiation, namely, mechanical inertia, whereby it has been supposed to retard the career of the heavenly bodies, as shown especially by the history of Encke’s comet. This comet returned sooner than it should, as calculated from the usual data; the difference was ascribed to the influence of a resisting medium in reducing the extent of its orbit; and such a medium may be the ether. If this conjecture (now of less credit) should gain acceptance, the ether might be regarded as a vera causa (that is, a condition whose existence may be proved independently of the phenomena it was intended to explain), in spite of its being excluded by its nature from the sphere of direct perception. However, science is not a way of perceiving things, but essentially a way of thinking about them. It starts, indeed, from perception and returns to it, and its thinking is controlled by the analogies of perception. Atoms and ether are thought about as if they could be seen or felt, not as noumena; and if still successful in connecting and explaining perceptions, and free from contradiction, they will stand as hypotheses on that ground.

Further proof of the corpuscular nature of ..

development of the corpuscular theory of light, ..
Photo provided by Flickr

Apparently, to such completeness of demonstration certain conditions are necessary: the possibilities must lie between alternatives, such as A or not-A, or amongst some definite list of cases that may be exhausted, such as equal, greater or less. He whose hypothesis cannot be brought to such a definite issue, must try to refute whatever other hypotheses are offered, and naturally he will attack first the strongest rivals. With this object in view he looks about for a “crucial instance,” that is, an observation or experiment that stands like a cross (sign-post) at the parting of the ways to guide us into the right way, or, in plain words, an instance that can be explained by one hypothesis but not by another. Thus the phases of Venus, similar to those of the Moon, but concurring with great changes of apparent size, presented, when discovered by Galileo, a crucial instance in favour of the Copernican hypothesis, as against the Ptolemaic, so far at least as to prove that Venus revolved around the Sun inside the orbit of the Earth. Foucault’s experiment determining the velocity of Light (cited in the last chapter) was at first intended as an experimentum crucis to decide between the corpuscular and undulatory theories; and answered this purpose, by showing that the velocity of a beam passed through water was less than it should be by the former, but in agreement with the latter doctrine (Deschanel: Section 813).

Newton's corpuscular theory was expounded in memoirs communicatedto the Royal Society in December 1675, which are substantiallyreproduced in his , published in 1704. In the latterwork he dealt in detail with his theory of fits of easy reflexionand transmission, and the colours of thin plates, to which he addedan explanation of the colours of thick plates [bk. II, part 4] andobservations on the inflexion of light [bk. III].

Philosophy is intertwined with the corpuscular philosophy and ..
Photo provided by Flickr
Order now
  • Descartes’s Law of Motion - Illinois Institute of Technology

    In The Excellency and Grounds of the Mechanical Hypothesis (aka the mechanical or corpuscular philosophy) ..

  • Mechanical or corpuscular philosophy

    Or can this adjective be applied to Newton’s corpuscular theory of light, ..

  • Mechanical philosophy In the early 17th century, ..

    Defended method of hypothesis and test in Preface to Treatise on Light (1678) A

Order now

Learn about this topic in these articles: work of Boyle

Closely allied to this method of Abstraction is the Mathematical Method of Limits. In his History of Scientific Ideas (B. II. c. 12), Whewell says: “The Idea of a Limit supplies a new mode of establishing mathematical truths. Thus with regard to the length of any portion of a curve, a problem which we have just mentioned; a curve is not made up of straight lines, and therefore we cannot by means of any of the doctrines of elementary geometry measure the length of any curve. But we may make up a figure nearly resembling any curve by putting together many short straight lines, just as a polygonal building of very many sides may nearly resemble a circular room. And in order to approach nearer and nearer to a curve, we may make the sides more and more small, more and more numerous. We may then possibly find some mode of measurement, some relation of these small lines to other lines, which is not disturbed by the multiplication of the sides, however far it be carried. And thus we may do what is equivalent to measuring the curve itself; for by multiplying the sides we may approach more and more closely to the curve till no appreciable difference remains. The curve line is the Limit of the polygon; and in this process we proceed on the Axiom that ‘What is true up to the Limit is true at the Limit.’”

John Locke (Stanford Encyclopedia of Philosophy)

Arguably, the greatest of Faraday's many scientific contributions wasthe which he formulated in 1831. After explaining the 1820 observation of in terms of whatwe now call the magnetic , Faraday did much more than inventthe electric motor. Eventually, he opened entirely new vistas for physics. He proposed that light itself was an electromagneticphenomenon and lived to be proven right mathematically by his young friend,.

Francis Bacon, the first philosopher of ..

Such abstractions are necessary to science; for no object is comprehensible by us in all its properties at once. But if we forget the limitations of our abstract data, we are liable to make strange blunders by mistaking the character of the results: treating the results as simply true of actual things, instead of as true of actual things only so far as they are represented by the abstractions. In addressing abstract reasoning, therefore, to those who are unfamiliar with scientific methods, pains should be taken to make it clear what the abstractions are, what are the consequent limitations upon the argument and its conclusions, and what corrections and allowances are necessary in order to turn the conclusions into an adequate account of the concrete facts. The greater the number, variety, and subtlety of the properties possessed by any object (such as human nature), the greater are the qualifications required in the conclusions of abstract reasoning, before they can hold true of such an object in practical affairs.

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order