Call us toll-free

Protein Synthesis and genetic code

17- protein synthesis

Approximate price

Pages:

275 Words

$19,50

Explain how a gene directs the synthesis of a protein

26) free ful pdf
J Cell Sci. 2000 Nov;113 ( Pt 22):3897-905.
ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. Norton JD.
The ubiquitously expressed family of ID helix-loop-helix (HLH) proteins function as dominant negative regulators of basic HLH (bHLH) transcriptional regulators that drive cell lineage commitment and differentiation in metazoa. Recent data from cell line and in vivo studies have implicated the functions of ID proteins in other cellular processes besides negative regulation of cell differentiation. ID proteins play key roles in the regulation of lineage commitment, cell fate decisions and in the timing of differentiation during neurogenesis, lymphopoiesis and neovascularisation (angiogenesis). They are essential for embryogenesis and for cell cycle progression, and they function as positive regulators of cell proliferation. ID proteins also possess pro-apoptotic properties in a variety of cell types and function as cooperating or dominant oncoproteins in immortalisation of rodent and human cells and in tumour induction in Id-transgenic mice. In several human tumour types, the expression of ID proteins is deregulated, and loss- and gain-of-function studies implicate ID functions in the regulation of tumour growth, vascularisation, invasiveness and metastasis. More recent biochemical studies have also revealed an emerging ‘molecular promiscuity’ of mammalian ID proteins: they directly interact with and modulate the activities of several other families of transcriptional regulator, besides bHLH proteins.

PPT - Protein Synthesis and Gene Expression …

Pancreatic adenocarcinomas are among the most malignant forms of cancer and, therefore, it is of especial interest to set new strategies aimed at improving the prognostic of this deadly disease. The present study was undertaken to investigate the action of cannabinoids, a new family of potential antitumoral agents, in pancreatic cancer. We show that cannabinoid receptors are expressed in human pancreatic tumor cell lines and tumor biopsies at much higher levels than in normal pancreatic tissue. Studies conducted with MiaPaCa2 and Panc1 cell lines showed that cannabinoid administration (a) induced apoptosis, (b) increased ceramide levels, and (c) up-regulated mRNA levels of the stress protein p8. These effects were prevented by blockade of the CB(2) cannabinoid receptor or by pharmacologic inhibition of ceramide synthesis de novo. Knockdown experiments using selective small interfering RNAs showed the involvement of p8 via its downstream endoplasmic reticulum stress-related targets activating transcription factor 4 (ATF-4) and TRB3 in Delta(9)-tetrahydrocannabinol-induced apoptosis. Cannabinoids also reduced the growth of tumor cells in two animal models of pancreatic cancer. In addition, cannabinoid treatment inhibited the spreading of pancreatic tumor cells. Moreover, cannabinoid administration selectively increased apoptosis and TRB3 expression in pancreatic tumor cells but not in normal tissue. In conclusion, results presented here show that cannabinoids lead to apoptosis of pancreatic tumor cells via a CB(2) receptor and de novo synthesized ceramide-dependent up-regulation of p8 and the endoplasmic reticulum stress-related genes ATF-4 and TRB3. These findings may contribute to set the basis for a new therapeutic approach for the treatment of pancreatic cancer.

Protein Synthesis and Gene Expression

Protein biosynthesis | CourseNotes

Genetic studies in Drosophila and mice
(discussed above) now provide direct evidence for a role for
ID proteins in cell proliferation and cell cycle control in vivo.

Anti-apoptotic Bcl-2 family members close the VDAC, whereas some (but not all) pro-apoptotic members interact with the VDAC to generate a protein-conducting channel through which cytochrome c can pass. Although the VDAC is directly involved in the apoptotic increase of mitochondrial membrane permeability and is known to be a component of the permeability transition pore complex, its role in the regulation of outer membrane permeability can be separated from the occurrence of permeability transition events, such as mitochondrial swelling followed by rupture of the outer mitochondrial membrane. The VDAC not only interacts with Bcl-2 family members, but also with other proteins, and probably acts as a convergence point for a variety of life-or-death signals.

which DNA directs protein synthesis, ..

Autophagy is a degradative process conserved among all eukaryotic cells and is required for the rapid degradation of large portions of the cytoplasm and unnecessary or damaged organelles in the lysosome lumen. It has long been known that this catabolic pathway is essential to generate an internal pool of nutrients that permit cells to survive during prolonged periods of starvation. Recent studies however, have revealed that autophagy actively participates in other cellular processes such as development, cellular differentiation and rearrangement, aging, elimination of aberrant structures and type II programmed cell death, as well as contributing to the cell’s defense against pathogens (both viruses and bacteria) and tumors. Consequently, defects in this protective barrier correlate with a growing list of diseases, including cancer, neurodegenerative disorders such as Huntington’s, Parkinson’s and Alzheimer’s diseases, and cardiomyopathies.
The main morphological feature of autophagy is the sequestration of the cargo targeted for destruction by a large cytosolic double-membrane vesicle called autophagosome that delivers it into the lysosome/vacuole interior for destruction. Despite the identification of many specific components, the molecular mechanism that directs formation of the sequestering vesicles remains largely unknown.

AB - Disturbances in protein folding and membrane compositions in the endoplasmic reticulum (ER) elicit the unfolded protein response (UPR). Each of three UPR sensory proteins-PERK (PEK/EIF2AK3), IRE1, and ATF6-is activated by ER stress. PERK phosphorylation of eIF2 represses global protein synthesis, lowering influx of nascent polypeptides into the stressed ER, coincident with preferential translation of ATF4 (CREB2). In cultured cells, ATF4 induces transcriptional expression of genes directed by the PERK arm of the UPR, including genes involved in amino acid metabolism, resistance to oxidative stress, and the proapoptotic transcription factor CHOP (GADD153/DDIT3). In this study, we characterize whole-body and tissue-specific ATF4-knockout mice and show in liver exposed to ER stress that ATF4 is not required for CHOP expression, but instead ATF6 is a primary inducer. RNA-Seq analysis indicates that ATF4 is responsible for a small portion of the PERK-dependent UPR genes and reveals a requirement for expression of ATF4 for expression of genes involved in oxidative stress response basally and cholesterol metabolism both basally and under stress. Consistent with this pattern of gene expression, loss of ATF4 resulted in enhanced oxidative damage, and increased free cholesterol in liver under stress accompanied by lowered cholesterol in sera.

Order now
  • Initiation of Protein Synthesis

    Protein biosynthesis

  • Gene Expression | Protein Synthesis

    protein synthesis occurs ..

  • RNA and Protein Synthesis Answer Key - …

    Protein Synthesis: ..

Order now

What describes the synthesis of RNA with a template ..

N2 - Disturbances in protein folding and membrane compositions in the endoplasmic reticulum (ER) elicit the unfolded protein response (UPR). Each of three UPR sensory proteins-PERK (PEK/EIF2AK3), IRE1, and ATF6-is activated by ER stress. PERK phosphorylation of eIF2 represses global protein synthesis, lowering influx of nascent polypeptides into the stressed ER, coincident with preferential translation of ATF4 (CREB2). In cultured cells, ATF4 induces transcriptional expression of genes directed by the PERK arm of the UPR, including genes involved in amino acid metabolism, resistance to oxidative stress, and the proapoptotic transcription factor CHOP (GADD153/DDIT3). In this study, we characterize whole-body and tissue-specific ATF4-knockout mice and show in liver exposed to ER stress that ATF4 is not required for CHOP expression, but instead ATF6 is a primary inducer. RNA-Seq analysis indicates that ATF4 is responsible for a small portion of the PERK-dependent UPR genes and reveals a requirement for expression of ATF4 for expression of genes involved in oxidative stress response basally and cholesterol metabolism both basally and under stress. Consistent with this pattern of gene expression, loss of ATF4 resulted in enhanced oxidative damage, and increased free cholesterol in liver under stress accompanied by lowered cholesterol in sera.

Rna protein-synthesis - SlideShare

T1 - Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver

Protein Synthesis and the Genetic Code - GitHub Pages

Disturbances in protein folding and membrane compositions in the endoplasmic reticulum (ER) elicit the unfolded protein response (UPR). Each of three UPR sensory proteins-PERK (PEK/EIF2AK3), IRE1, and ATF6-is activated by ER stress. PERK phosphorylation of eIF2 represses global protein synthesis, lowering influx of nascent polypeptides into the stressed ER, coincident with preferential translation of ATF4 (CREB2). In cultured cells, ATF4 induces transcriptional expression of genes directed by the PERK arm of the UPR, including genes involved in amino acid metabolism, resistance to oxidative stress, and the proapoptotic transcription factor CHOP (GADD153/DDIT3). In this study, we characterize whole-body and tissue-specific ATF4-knockout mice and show in liver exposed to ER stress that ATF4 is not required for CHOP expression, but instead ATF6 is a primary inducer. RNA-Seq analysis indicates that ATF4 is responsible for a small portion of the PERK-dependent UPR genes and reveals a requirement for expression of ATF4 for expression of genes involved in oxidative stress response basally and cholesterol metabolism both basally and under stress. Consistent with this pattern of gene expression, loss of ATF4 resulted in enhanced oxidative damage, and increased free cholesterol in liver under stress accompanied by lowered cholesterol in sera.

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order