Call us toll-free

Statistics For Dummies Cheat Sheet

There are two main types of Inferential Statistics, estimation and hypothesis testing.

Approximate price


275 Words


Inferential Statistics: Comparison of Sample Means

Both descriptive and inferential statistics rely on the same set of data. Descriptive statistics rely solely on this set of data, whilst inferential statistics also rely on this data in order to make generalisations about a larger population.

This table organizes procedures for inferentialstatistics into a chart of Cases.

There are two types of statistical analysis tools, i.e. descriptive statistics and inferential statistics. This article introduces the statistical tools used in both inferential and descriptive statistics.

(Chapter 19, pp.261-289, Inferential Statistics).

T statistics Hypothesis testing with one sample Inferential Elite Research LLC

The concept of is closely tied to inferential statistics wherein the researcher seeks to determine if the sample characteristics observed during statistical testing are sufficiently deviant from the null hypothesis so that its rejection is justified. In order to test a hypothesis, the researcher first needs to define the statistical model which can describe the behavior of data and type of sample population parameter which needs to be tested. Most of the statistical analysis models belong to normal distribution like:

Inferential statistics are procedures which allow researchers to infer or generalize observations made with samples to the larger population from which they are selected. It is different from descriptive statistics in a way that while descriptive statistics remains local to the sample describing the central tendency and variability in the sample, inferential statistics is focused on making statements about the population.

"Inferential Statistics: Comparison of Sample Means".

A number of inferential statistical procedures have been developed to carry out this process.

A sample may not be representative of the target population because of two problems:

• Sampling errors that occur by chance
• Sample bias, which stems from inadequate design

What Inferential Statistics Do

Since sample bias is a problem with the research design, inferential statistics does not attempt to correct it.

Our confidence in this statistical method is given by a confidence level which is the probability that this method will result in a confidence interval that contains the population parameter. For example, a confidence level of 95% means that the method used to calculate a confidence interval will yield a result (i.e., an interval) that actually contains the population parameter 95% of the time (i.e., for 95% of all possible samples). Notice that it is always possible that the particular sample we used to calculate the confidence interval is among the 5% for which the calculated interval does not contain the population parameter.

The most common descriptive statistics are in the following table, along with their formulas and a short description of what each one measures.
Order now
  • Inferential Statistics: Learn Statistical Analysis | Udacity

    Descriptive Statistics

  • Descriptive vs Inferential Statistics - My Market …

    Inferential Statistics

  • Descriptive and Inferential Statistics - …

    Inferential statistics help researchers to make generalizations about a population based on the sample studied.

Order now

Inferential and Predictive Statistics for Business | …

The purpose of descriptive statistics is to allow us to more easily grasp thesignificant features of a set of sample data. However, they tell us little about the population from which the sample wastaken. Inferential statistics is the branch ofstatistics that deals with using sample data to make valid judgments (inferences) about the population fromwhich the sample data came.

Statistical hypothesis testing - Wikipedia

Hypothesis testing statistics allow us to use to make statistical inferences about whether or not the data we gathered support a particular hypothesis. There are many hypothesis testing procedures. See my Statistics Tutorial topics on some of these such as the , , and (analysis of variance).

Analysis of Variance 3 -Hypothesis Test with F-Statistic

The table below illustrates some differences between descriptive statistics andinferential statistics. In each example, descriptive statistics are used to tellus something about a sample. Inferential statistics are used to tell ussomething about the corresponding population.

descriptive statistics and inferential statistics ..

Parameter estimation statistics allow us to make inferences about how well a particular model might describe the relationship between variables in a population. Examples of parameter estimation statistics include a linear regression model, a logistic regression model, and the Cox regression model. For more information, see my Statistics Tutorial topics on and .

Inferential Statistics and Hypothesis Testing by …

So far, we have focused on descriptive statistics that describe a particular sample from a much larger population. Recall, however, that the ultimate goal is to be able to describe the population from which the sample came. For example, we might calculate the average reaction time of a sample of teen drivers in order to learn something about the reaction times of the population of all teen drivers. In a different context, we might determine what proportion of a sample of voters approves of the President's performance in order to learn something about the proportion of the entire population who approve.

Inferential Statistics and Hypothesis Testing.

Inferential statistics are usually the most important part of a dissertation's statistical analysis. Inferential statistics are used to allow a researcher to make statistical inferences, that is draw conclusions about the study population based upon the sample data. Most of your chapter will focus on presenting the results of inferential statistics used for your data.

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order