Call us toll-free

JO - Nanoscale Research Letters

A very high chemical yield of ~95% is demonstrated, as well asthe facile gram-scale production of monodisperse CISe QDs.

Approximate price

Pages:

275 Words

$19,50

T2 - Nanoscale Research Letters

The scheme of our hybrid flow reactor is shown in Figure . The reactor is composed of two flask mixers, one pump, and one furnace. Both flow rate and temperature can be controlled[]. To produce CIS/ZnS NCs, precursors for the CIS cores are injected into flask mixer. After completing CIS NCs growth, a consecutive ZnS shell overcoating was conducted by adding ZnS stock solution of zinc acetate (8 mmol), OA (4 mL), DDT (4 mL), and TOA (8 mL) into about 10 mL of the CIS NCs crude solution, this time injecting Zn and S shell precursors into furnace (320°C) simultaneously with the CIS core NCs. Using this system, large amounts of CIS/ZnS NCs can be obtained (inset of Figure ), with colors ranging from yellow to red. Owing to the facileness of our stepwise, consecutive hybrid flow reactor approach, CIS/ZnS NCs are also readily scalable to a larger amount.

JF - Nanoscale Research Letters

In summary, highly luminescent CIS/ZnS core/shell NCs with a quantum yield of 61.4% were synthesized on a large scale using a hybrid flow reactor in a simple, one-step process. XRD, XPS, EDX, and HRTEM characterizations show that the fabricated CIS/ZnS NCs are of high quality. This newly developed synthetic methodology is ideal in a number of ways as it can be easily altered to yield a high-quality product on a gram scale with low loss, is highly reproducible, and is based on green chemistry. In the present work, the photostability of high-quality CIS/ZnS NCs was investigated at ambient condition both under UV irradiation and in the darkness. The as-synthesized CIS/ZnS NCs were proven to have excellent photostability. In addition, this method can also be simply extended to AgInS2, Znx(CuIn)1-xS2 and CuGaxIn1-xS2 systems, which are also of interest for light emitting, biolabel, and solar harvesting applications.

Electronic gram scale for sale | scholarly search

This is a noninjection-based approach in 1-dodecanethiol (DDT) with excellent synthetic reproducibility and large-scale capability.

We report a high-yield, low-cost synthesis route to colloidal CuInS2/ZnS (CIS/ZnS) nanocrystals (NCs) with Cu vacancies in the crystal lattice. Yellow-emitting CIS/ZnS core/shell NCs of high luminescence were facilely synthesized via a stepwise, consecutive hybrid flow reactor approach. It is based on serial combination of a batch-type mixer and a flow-type furnace. In this reactor, the flow rate of the solutions was typically 1 mL/min, 100 times larger than that of conventional microfluidic reactors. This method can produce gram quantities of material with a chemical yield in excess of 90% with minimal solvent waste. This is a noninjection-based approach in 1-dodecanethiol (DDT) with excellent synthetic reproducibility and large-scale capability. The optical features and structure of the obtained CIS/ZnS NCs have been characterized by UV–vis and fluorescence spectroscopies, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscopy (HRTEM). The resulting CIS/ZnS NCs in chloroform exhibit quantum yield (QY) of 61.4% with photoemission peaking at 561 nm and full width at half maximum (FWHM) of 92 nm. The as-synthesized CIS/ZnS NCs were proven to have excellent photostability. The synthesized CIS/ZnS NCs can be a promising fluorescent probe for biological imaging and color converting material for light-emitting diode due to Cd-free constituents.

The scheme of our hybrid flow reactor is shown in Figure . The reactor is composed of two flask mixers, one pump, and one furnace. Both flow rate and temperature can be controlled[]. To produce CIS/ZnS NCs, precursors for the CIS cores are injected into flask mixer. After completing CIS NCs growth, a consecutive ZnS shell overcoating was conducted by adding ZnS stock solution of zinc acetate (8 mmol), OA (4 mL), DDT (4 mL), and TOA (8 mL) into about 10 mL of the CIS NCs crude solution, this time injecting Zn and S shell precursors into furnace (320°C) simultaneously with the CIS core NCs. Using this system, large amounts of CIS/ZnS NCs can be obtained (inset of Figure ), with colors ranging from yellow to red. Owing to the facileness of our stepwise, consecutive hybrid flow reactor approach, CIS/ZnS NCs are also readily scalable to a larger amount.

Large-scale synthesis of highly emissive and …

CharlesCao

We report a high-yield, low-cost synthesis route to colloidal CuInS2/ZnS (CIS/ZnS) nanocrystals (NCs) with Cu vacancies in the crystal lattice. Yellow-emitting CIS/ZnS core/shell NCs of high luminescence were facilely synthesized via a stepwise, consecutive hybrid flow reactor approach. It is based on serial combination of a batch-type mixer and a flow-type furnace. In this reactor, the flow rate of the solutions was typically 1 mL/min, 100 times larger than that of conventional microfluidic reactors. This method can produce gram quantities of material with a chemical yield in excess of 90% with minimal solvent waste. This is a noninjection-based approach in 1-dodecanethiol (DDT) with excellent synthetic reproducibility and large-scale capability. The optical features and structure of the obtained CIS/ZnS NCs have been characterized by UV–vis and fluorescence spectroscopies, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscopy (HRTEM). The resulting CIS/ZnS NCs in chloroform exhibit quantum yield (QY) of 61.4% with photoemission peaking at 561 nm and full width at half maximum (FWHM) of 92 nm. The as-synthesized CIS/ZnS NCs were proven to have excellent photostability. The synthesized CIS/ZnS NCs can be a promising fluorescent probe for biological imaging and color converting material for light-emitting diode due to Cd-free constituents.

In summary, highly luminescent CIS/ZnS core/shell NCs with a quantum yield of 61.4% were synthesized on a large scale using a hybrid flow reactor in a simple, one-step process. XRD, XPS, EDX, and HRTEM characterizations show that the fabricated CIS/ZnS NCs are of high quality. This newly developed synthetic methodology is ideal in a number of ways as it can be easily altered to yield a high-quality product on a gram scale with low loss, is highly reproducible, and is based on green chemistry. In the present work, the photostability of high-quality CIS/ZnS NCs was investigated at ambient condition both under UV irradiation and in the darkness. The as-synthesized CIS/ZnS NCs were proven to have excellent photostability. In addition, this method can also be simply extended to AgInS2, Znx(CuIn)1-xS2 and CuGaxIn1-xS2 systems, which are also of interest for light emitting, biolabel, and solar harvesting applications.

T1 - Large-scale synthesis of highly emissive and photostable CuInS2/ZnS nanocrystals through hybrid flow reactor
Order now
  • Successive and large-scale synthesis of …

    KW - Large-scale synthesis

  • A Large-Scale Synthesis and Characterization of …

    Noninjection gram-scale synthesis of monodisperse pyramidal CuInS2 nanocrystals and their size-dependent properties

  • Sub-kilogram-Scale One-Pot Synthesis of Highly …

    Ding Y, Li Y, Scholes GD: Noninjection gram-scale synthesis of monodisperse ..

Order now

Scalable noninjection phosphine-free synthesis and …

N2 - We report a high-yield, low-cost synthesis route to colloidal CuInS2/ZnS (CIS/ZnS) nanocrystals (NCs) with Cu vacancies in the crystal lattice. Yellow-emitting CIS/ZnS core/shell NCs of high luminescence were facilely synthesized via a stepwise, consecutive hybrid flow reactor approach. It is based on serial combination of a batch-type mixer and a flow-type furnace. In this reactor, the flow rate of the solutions was typically 1 mL/min, 100 times larger than that of conventional microfluidic reactors. This method can produce gram quantities of material with a chemical yield in excess of 90% with minimal solvent waste. This is a noninjection-based approach in 1-dodecanethiol (DDT) with excellent synthetic reproducibility and large-scale capability. The optical features and structure of the obtained CIS/ZnS NCs have been characterized by UV–vis and fluorescence spectroscopies, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscopy (HRTEM). The resulting CIS/ZnS NCs in chloroform exhibit quantum yield (QY) of 61.4% with photoemission peaking at 561 nm and full width at half maximum (FWHM) of 92 nm. The as-synthesized CIS/ZnS NCs were proven to have excellent photostability. The synthesized CIS/ZnS NCs can be a promising fluorescent probe for biological imaging and color converting material for light-emitting diode due to Cd-free constituents.

Noninjection gram-scale synthesis ..

We report a high-yield, low-cost synthesis route to colloidal CuInS/ZnS (CIS/ZnS) nanocrystals (NCs) with Cu vacancies in the crystal lattice. Yellow-emitting CIS/ZnS core/shell NCs of high luminescence were facilely synthesized via a stepwise, consecutive hybrid flow reactor approach. It is based on serial combination of a batch-type mixer and a flow-type furnace. In this reactor, the flow rate of the solutions was typically 1 mL/min, 100 times larger than that of conventional microfluidic reactors. This method can produce gram quantities of material with a chemical yield in excess of 90% with minimal solvent waste. This is a noninjection-based approach in 1-dodecanethiol (DDT) with excellent synthetic reproducibility and large-scale capability. The optical features and structure of the obtained CIS/ZnS NCs have been characterized by UV–vis and fluorescence spectroscopies, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscopy (HRTEM). The resulting CIS/ZnS NCs in chloroform exhibit quantum yield (QY) of 61.4% with photoemission peaking at 561 nm and full width at half maximum (FWHM) of 92 nm. The as-synthesized CIS/ZnS NCs were proven to have excellent photostability. The synthesized CIS/ZnS NCs can be a promising fluorescent probe for biological imaging and color converting material for light-emitting diode due to Cd-free constituents.

Noninjection gram-scale synthesis of ..

AB - We report a high-yield, low-cost synthesis route to colloidal CuInS2/ZnS (CIS/ZnS) nanocrystals (NCs) with Cu vacancies in the crystal lattice. Yellow-emitting CIS/ZnS core/shell NCs of high luminescence were facilely synthesized via a stepwise, consecutive hybrid flow reactor approach. It is based on serial combination of a batch-type mixer and a flow-type furnace. In this reactor, the flow rate of the solutions was typically 1 mL/min, 100 times larger than that of conventional microfluidic reactors. This method can produce gram quantities of material with a chemical yield in excess of 90% with minimal solvent waste. This is a noninjection-based approach in 1-dodecanethiol (DDT) with excellent synthetic reproducibility and large-scale capability. The optical features and structure of the obtained CIS/ZnS NCs have been characterized by UV–vis and fluorescence spectroscopies, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX) and high-resolution transmission electron microscopy (HRTEM). The resulting CIS/ZnS NCs in chloroform exhibit quantum yield (QY) of 61.4% with photoemission peaking at 561 nm and full width at half maximum (FWHM) of 92 nm. The as-synthesized CIS/ZnS NCs were proven to have excellent photostability. The synthesized CIS/ZnS NCs can be a promising fluorescent probe for biological imaging and color converting material for light-emitting diode due to Cd-free constituents.

Order now
  • Kim

    "I have always been impressed by the quick turnaround and your thoroughness. Easily the most professional essay writing service on the web."

  • Paul

    "Your assistance and the first class service is much appreciated. My essay reads so well and without your help I'm sure I would have been marked down again on grammar and syntax."

  • Ellen

    "Thanks again for your excellent work with my assignments. No doubts you're true experts at what you do and very approachable."

  • Joyce

    "Very professional, cheap and friendly service. Thanks for writing two important essays for me, I wouldn't have written it myself because of the tight deadline."

  • Albert

    "Thanks for your cautious eye, attention to detail and overall superb service. Thanks to you, now I am confident that I can submit my term paper on time."

  • Mary

    "Thank you for the GREAT work you have done. Just wanted to tell that I'm very happy with my essay and will get back with more assignments soon."

Ready to tackle your homework?

Place an order