Statistics  Null and Alternative Hypotheses
If, for example, the null hypothesis says two population means are equal, the alternative says the means are unequal.
They are called the null hypothesis and the alternative hypothesis
Here are three experiments to illustrate when the different approaches to statistics are appropriate. In the first experiment, you are testing a plant extract on rabbits to see if it will lower their blood pressure. You already know that the plant extract is a diuretic (makes the rabbits pee more) and you already know that diuretics tend to lower blood pressure, so you think there's a good chance it will work. If it does work, you'll do more lowcost animal tests on it before you do expensive, potentially risky human trials. Your prior expectation is that the null hypothesis (that the plant extract has no effect) has a good chance of being false, and the cost of a false positive is fairly low. So you should do frequentist hypothesis testing, with a significance level of 0.05.
There are different ways of doing statistics. The technique used by the vast majority of biologists, and the technique that most of this handbook describes, is sometimes called "frequentist" or "classical" statistics. It involves testing a null hypothesis by comparing the data you observe in your experiment with the predictions of a null hypothesis. You estimate what the probability would be of obtaining the observed results, or something more extreme, if the null hypothesis were true. If this estimated probability (the P value) is small enough (below the significance value), then you conclude that it is unlikely that the null hypothesis is true; you reject the null hypothesis and accept an alternative hypothesis.
Null and Alternative Hypothesis  Real Statistics Using …
A related criticism is that a significant rejection of a null hypothesis might not be biologically meaningful, if the difference is too small to matter. For example, in the chickensex experiment, having a treatment that produced 49.9% male chicks might be significantly different from 50%, but it wouldn't be enough to make farmers want to buy your treatment. These critics say you should estimate the effect size and put a on it, not estimate a P value. So the goal of your chickensex experiment should not be to say "Chocolate gives a proportion of males that is significantly less than 50% (P=0.015)" but to say "Chocolate produced 36.1% males with a 95% confidence interval of 25.9 to 47.4%." For the chickenfeet experiment, you would say something like "The difference between males and females in mean foot size is 2.45 mm, with a confidence interval on the difference of ±1.98 mm."
This criticism only applies to twotailed tests, where the null hypothesis is "Things are exactly the same" and the alternative is "Things are different." Presumably these critics think it would be okay to do a onetailed test with a null hypothesis like "Foot length of male chickens is the same as, or less than, that of females," because the null hypothesis that male chickens have smaller feet than females could be true. So if you're worried about this issue, you could think of a twotailed test, where the null hypothesis is that things are the same, as shorthand for doing two onetailed tests. A significant rejection of the null hypothesis in a twotailed test would then be the equivalent of rejecting one of the two onetailed null hypotheses.
24/12/2013 · Null/alternative hypothesis: ..
A Bayesian would insist that you put in numbers just how likely you think the null hypothesis and various values of the alternative hypothesis are, before you do the experiment, and I'm not sure how that is supposed to work in practice for most experimental biology. But the general concept is a valuable one: as Carl Sagan summarized it, "Extraordinary claims require extraordinary evidence."
A fairly common criticism of the hypothesistesting approach to statistics is that the null hypothesis will always be false, if you have a big enough sample size. In the chickenfeet example, critics would argue that if you had an infinite sample size, it is impossible that male chickens would have exactly the same average foot size as female chickens. Therefore, since you know before doing the experiment that the null hypothesis is false, there's no point in testing it.
hypothesis as a null and alternative hypothesis.

Difference Between Null and Alternative Hypothesis …
The alternative hypothesis is the hypothesis used in hypothesis testing that is contrary to the null hypothesis

So what do I mean by a null and alternative hypothesis
The statement that is hoped or expected to be true instead of the null hypothesis is the alternative ..

the null hypothesis and the alternative hypothesis
27/09/2016 · Is the null and alternative hypothesis for this multiple linear ..
Writing Null and Alternative Hypotheses  YouTube
You should decide whether to use the onetailed or twotailed probability before you collect your data, of course. A onetailed probability is more powerful, in the sense of having a lower chance of false negatives, but you should only use a onetailed probability if you really, truly have a firm prediction about which direction of deviation you would consider interesting. In the chicken example, you might be tempted to use a onetailed probability, because you're only looking for treatments that decrease the proportion of worthless male chickens. But if you accidentally found a treatment that produced 87% male chickens, would you really publish the result as "The treatment did not cause a significant decrease in the proportion of male chickens"? I hope not. You'd realize that this unexpected result, even though it wasn't what you and your farmer friends wanted, would be very interesting to other people; by leading to discoveries about the fundamental biology of sexdetermination in chickens, in might even help you produce more female chickens someday. Any time a deviation in either direction would be interesting, you should use the twotailed probability. In addition, people are skeptical of onetailed probabilities, especially if a onetailed probability is significant and a twotailed probability would not be significant (as in our chocolateeating chicken example). Unless you provide a very convincing explanation, people may think you decided to use the onetailed probability after you saw that the twotailed probability wasn't quite significant, which would be cheating. It may be easier to always use twotailed probabilities. For this handbook, I will always use twotailed probabilities, unless I make it very clear that only one direction of deviation from the null hypothesis would be interesting.
Examples of null and alternative hypothesis  …
In the olden days, when people looked up P values in printed tables, they would report the results of a statistical test as "PPP>0.10", etc. Nowadays, almost all computer statistics programs give the exact P value resulting from a statistical test, such as P=0.029, and that's what you should report in your publications. You will conclude that the results are either significant or they're not significant; they either reject the null hypothesis (if P is below your predetermined significance level) or don't reject the null hypothesis (if P is above your significance level). But other people will want to know if your results are "strongly" significant (P much less than 0.05), which will give them more confidence in your results than if they were "barely" significant (P=0.043, for example). In addition, other researchers will need the exact P value if they want to combine your results with others into a .
Discuss how the Null and Alternative hypothesis for a …
When a study is being planned, it is possible to choose the sample size to set the power to any desired value for some particular alternative to the null hypothesis.